Dolomite

( /ˈdɒləmaɪt/) is an anhydrous carbonate mineral composed of calcium magnesium carbonate, ideally CaMg(CO3)2. The term is also used for a sedimentary carbonate rock composed mostly of the mineral dolomite. An alternative name sometimes used for the dolomitic rock type is dolostone.

Contents
1 History
2 Properties
3 Formation
4 Uses
5 See also
6 References
7 External links
History
Most probably the mineral dolomite was first described by Carl Linnaeus in 1768. In 1791, it was described as a rock by the French naturalist and geologist Déodat Gratet de Dolomieu (1750–1801), first in buildings of the old city of Rome, and later as samples collected in the mountains now known as the Dolomite Alps of northern Italy. Nicolas-Théodore de Saussure first named the mineral (after Dolomieu) in March 1792.

Properties
The mineral dolomite crystallizes in the trigonal-rhombohedral system. It forms white, tan, gray, or pink crystals. Dolomite is a double carbonate, having an alternating structural arrangement of calcium and magnesium ions. It does not rapidly dissolve or effervesce (fizz) in dilute hydrochloric acid as calcite does. Crystal twinning is common.

Solid solution exists between dolomite, the iron-dominant ankerite and the manganese-dominant kutnohorite. Small amounts of iron in the structure give the crystals a yellow to brown tint. Manganese substitutes in the structure also up to about three percent MnO. A high manganese content gives the crystals a rosy pink color. Lead, zinc, and cobalt also substitute in the structure for magnesium. The mineral dolomite is closely related to huntite Mg3Ca(CO3)4.

Because dolomite can be dissolved by slightly acidic water, areas of dolomite are important as aquifers and contribute to karst terrain formation.

Formation
Modern dolomite formation has been found to occur under anaerobic conditions in supersaturated saline lagoons along the Rio de Janeiro coast of Brazil, namely, Lagoa Vermelha and Brejo do Espinho. It is often thought that dolomite will develop only with the help of sulfate-reducing bacteria (e.g. Desulfovibrio brasiliensis). However, low-temperature dolomite may occur in natural environments rich in organic matter and microbial cell surfaces. This occurs as a result of magnesium complexation by carboxyl groups associated with organic matter.

Dolomite (white) with magnesite (yellowish) from Spain

Upper Triassic dolostone of the Choč Nappe in Slovakia
Vast deposits of dolomite are present in the geological record, but the mineral is relatively rare in modern environments. Reproducible, inorganic low-temperature syntheses of dolomite and magnesite were published for the first time in 1999. Those laboratory experiments showed how the initial precipitation of a metastable “precursor” (such as magnesium calcite) will change gradually into more and more of the stable phase (such as dolomite or magnesite) during periodical intervals of dissolution and re-precipitation. The general principle governing the course of this irreversible geochemical reaction has been coined “breaking Ostwald’s step rule”.

There is some evidence for a biogenic occurrence of dolomite. One example is that of the formation of dolomite in the urinary bladder of a Dalmatian dog, possibly as the result of an illness or infection.

Uses
Dolomite is used as an ornamental stone, a concrete aggregate, and a source of magnesium oxide, as well as in the Pidgeon process for the production of magnesium. It is an important petroleum reservoir rock, and serves as the host rock for large strata-bound Mississippi Valley-Type (MVT) ore deposits of base metals such as lead, zinc, and copper. Where calcite limestone is uncommon or too costly, dolomite is sometimes used in its place as a flux for the smelting of iron and steel. Large quantities of processed dolomite are used in the production of float glass.

In horticulture, dolomite and dolomitic limestone are added to soils and soilless potting mixes as a pH buffer and as a magnesium source.

Dolomite is also used as the substrate in marine (saltwater) aquariums to help buffer changes in pH of the water.

Calcined dolomite is also used as a catalyst for destruction of tar in the gasification of biomass at high temperature.

Dolomite (light pink) with chalcopyrite from the Tri-state district, Cherokee County, Kansas (size: 11.4×7.2×4.6 cm)
Particle physics researchers like to build particle detectors under layers of dolomite to enable the detectors to detect the highest possible number of exotic particles. Because dolomite contains relatively minor quantities of radioactive materials, it can insulate against interference from cosmic rays without adding to background radiation levels.

dolomite

Quartzite (from German: Quarzit[1]) is a hard, non-foliated metamorphic rock which was originally pure quartz sandstone.[2][3] Sandstone is converted into quartzite through heating and pressure usually related to tectonic compression within orogenic belts. Pure quartzite is usually white to grey, though quartzites often occur in various shades of pink and red due to varying amounts of iron oxide (Fe2O3). Other colors, such as yellow, green, blue and orange, are due to other minerals.

When sandstone is cemented to quartzite, the individual quartz grains recrystallize along with the former cementing material to form an interlocking mosaic of quartz crystals.[2] Most or all of the original texture and sedimentary structures of the sandstone are erased by the metamorphism.[2] The grainy, sandpaper-like surface becomes glassy in appearance.[2] Minor amounts of former cementing materials, iron oxide, silica, carbonate and clay, often migrate during recrystallization and metamorphosis. This causes streaks and lenses to form within the quartzite.

Orthoquartzite is a very pure quartz sandstone composed of usually well-rounded quartz grains cemented by silica. Orthoquartzite is often 99% SiO2 with only very minor amounts of iron oxide and trace resistant minerals such as zircon, rutile and magnetite. Although few fossils are normally present, the original texture and sedimentary structures are preserved.

The term is also traditionally used for quartz-cemented quartz arenites,[4] and both usages are found in the literature. The typical distinction between the two (since each is a gradation into the other) is a metamorphic quartzite is so highly cemented, diagenetically altered, and metamorphosized so that it will fracture and break across grain boundaries, not around them.

Quartzite is very resistant to chemical weathering and often forms ridges and resistant hilltops. The nearly pure silica content of the rock provides little for soil; therefore, the quartzite ridges are often bare or covered only with a very thin layer of soil and (if any) little vegetation.
In the United States, formations of quartzite can be found in some parts of Pennsylvania, eastern South Dakota, Central Texas,[8] southwest Minnesota,[9] Devil’s Lake State Park in the Baraboo Range in Wisconsin,[10] the Wasatch Range in Utah,[11] near Salt Lake City, Utah and as resistant ridges in the Appalachians[12] and other mountain regions. Quartzite is also found in the Morenci Copper Mine in Arizona.[13] The town of Quartzsite in western Arizona derives its name from the quartzites in the nearby mountains in both Arizona and Southeastern California. A glassy vitreous quartzite has been described from the Belt Supergroup in the Coeur d’Alene district of northern Idaho.[14]

In the United Kingdom, a craggy ridge of quartzite called the Stiperstones (early Ordovician – Arenig Epoch, 500 Ma) runs parallel with the Pontesford-Linley fault, 6 km north-west of the Long Mynd in south Shropshire. Also to be found in England are the Cambrian “Wrekin quartzite” (in Shropshire), and the Cambrian “Hartshill quartzite” (Nuneaton area).[15] In Wales, Holyhead mountain and most of Holy island off Anglesey sport excellent Precambrian quartzite crags and cliffs. In the Scottish Highlands, several mountains (e.g. Foinaven, Arkle) composed of Cambrian quartzite can be found in the far north-west Moine Thrust Belt running in a narrow band from Loch Eriboll in a south-westerly direction to Skye.[16] In Ireland areas of quartzite are found across the northwest, with Mount Errigal in Donegal as the most prominent outcrop.

In Canada, the La Cloche Mountains in Ontario are composed primarily of white quartzite. The highest mountain in Mozambique, Monte Binga (2436 m), as well as the rest of the surrounding Chimanimani Plateau are composed of very hard, pale grey, precambrian quartzite. Quartzite is also mined in Brazil for use in kitchen countertops.

Quartzite (from German: Quarzit[1]) is a hard, non-foliated metamorphic rock which was originally pure quartz sandstone.[2][3] Sandstone is converted into quartzite through heating and pressure usually related to tectonic compression within orogenic belts. Pure quartzite is usually white to grey, though quartzites often occur in various shades of pink and red due to varying amounts of iron oxide (Fe2O3). Other colors, such as yellow, green, blue and orange, are due to other minerals.

Orthoquartzite is a very pure quartz sandstone composed of usually well-rounded quartz grains cemented by silica. Orthoquartzite is often 99% SiO2 with only very minor amounts of iron oxide and trace resistant minerals such as zircon, rutile and magnetite. Although few fossils are normally present, the original texture and sedimentary structures are preserved.

The term is also traditionally used for quartz-cemented quartz arenites,[4] and both usages are found in the literature. The typical distinction between the two (since each is a gradation into the other) is a metamorphic quartzite is so highly cemented, diagenetically altered, and metamorphosized so that it will fracture and break across grain boundaries, not around them.

Quartzite is very resistant to chemical weathering and often forms ridges and resistant hilltops. The nearly pure silica content of the rock provides little for soil; therefore, the quartzite ridges are often bare or covered only with a very thin layer of soil and (if any) little vegetation.
In the United States, formations of quartzite can be found in some parts of Pennsylvania, eastern South Dakota, Central Texas,[8] southwest Minnesota,[9] Devil’s Lake State Park in the Baraboo Range in Wisconsin,[10] the Wasatch Range in Utah,[11] near Salt Lake City, Utah and as resistant ridges in the Appalachians[12] and other mountain regions. Quartzite is also found in the Morenci Copper Mine in Arizona.[13] The town of Quartzsite in western Arizona derives its name from the quartzites in the nearby mountains in both Arizona and Southeastern California. A glassy vitreous quartzite has been described from the Belt Supergroup in the Coeur d’Alene district of northern Idaho.[14]

In the United Kingdom, a craggy ridge of quartzite called the Stiperstones (early Ordovician – Arenig Epoch, 500 Ma) runs parallel with the Pontesford-Linley fault, 6 km north-west of the Long Mynd in south Shropshire. Also to be found in England are the Cambrian “Wrekin quartzite” (in Shropshire), and the Cambrian “Hartshill quartzite” (Nuneaton area).[15] In Wales, Holyhead mountain and most of Holy island off Anglesey sport excellent Precambrian quartzite crags and cliffs. In the Scottish Highlands, several mountains (e.g. Foinaven, Arkle) composed of Cambrian quartzite can be found in the far north-west Moine Thrust Belt running in a narrow band from Loch Eriboll in a south-westerly direction to Skye.[16] In Ireland areas of quartzite are found across the northwest, with Mount Errigal in Donegal as the most prominent outcrop.

In Canada, the La Cloche Mountains in Ontario are composed primarily of white quartzite. The highest mountain in Mozambique, Monte Binga (2436 m), as well as the rest of the surrounding Chimanimani Plateau are composed of very hard, pale grey, precambrian quartzite. Quartzite is also mined in Brazil for use in kitchen countertops.

dolomite limestone

how is dolomite formed

where is dolomite found

dolomite meaning

dolomite rock

dolomite powder

dolomite vs limestone

dolomite cleavage

dolomite uses

dolomite powder uses

dolostone

dolomite identification

what is dolomite used for

dolomite chemical formula

gray dolomite meaning

pink dolomite crystal

dolomite jewelry

orange dolomite

dolomite meaning in tamil

dolomite stone

red dolomite stone

black dolomite crystal